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Abstract

Heat transfer for fully developed flow between parallel plates has been investigated widely throughout literature.

Results are given in form of either piecewise or continuos functions for the local and overall Nusselt-number. While the

first type of correlation might be more accurate the latter is easier to use. On the other hand there is no sense in

correlating local and overall Nusselt-number separately, as they are connected by definition. Therefore we derived a

correlation for the overall Nusselt-number to the above named problem from the series solution of the temperature

field, which is continuos and more accurate than any other correlation known to us. The corresponding local Nusselt-

number is easily calculated from that correlation. The result is, too, better than from any other correlation known to the

authors. � 2002 Published by Elsevier Science Ltd.

1. Introduction

Heat transfer for fully developed flow between par-

allel plates has been investigated widely throughout

the relevant literature. For the constant temperature

boundary condition Hw ¼ 0, correlations for the mean
Nusselt number Nu, defined with the caloric mean

temperature at the outlet �HH1 by

�HH1 ¼ expð�NTUÞ ¼ exp
�
� 4Nu

Gz

�
() Nu

¼ � 1
4
Gz lnð �HH1Þ ð1Þ

and the local Nusselt number Nux defined by

Nu ¼ 1

X

Z X

0

Nux dx () Nux ¼ Nu� Gz
oNu
oGz

ð2Þ

may be found in [2,3] for example.

Shah and London [3] propose the piecewise defined

function

NuSL ¼
Nu1 þ 0:0235Gz Gz < 166:�66
Nu2 þ 0:6 166:�66PGz < 2000
Nu2 GzP 2000

8<
: ð3Þ

with

Nu1 ¼ lim
Gz!0

ðNuÞ ¼ 7:541 and Nu2 ¼ lim
Gz!1

ðNuÞ

¼ 1:849Gz1=3 ð4Þ

for the mean Nusselt number and

NuSL;x ¼
Nu1 þ 6:874ðGz=1000Þ0:488 exp � 245

Gz

� �
Gz < 1000

2=3Nu2 þ 0:4
GzP 1000

8>><
>>: ð5Þ

for the local Nusselt number.

The VDI-W€aarmeatlas [2] on the other hand gives the
continuous correlation

NuWA ¼ ðNu31 þ Nu32Þ
1=3 ð6Þ
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with

Nu1 ¼ lim
Gz!0

ðNuÞ ¼ 7:541 and Nu2 ¼ lim
Gz!1

ðNuÞ

¼ 1:841Gz1=3 ð7Þ

for the mean Nusselt number, but has no separate cor-

relation for the local Nusselt number available nor does

it suggest the use of Eq. (2) to obtain it.

While Eq. (6) has the advantage of being continuous,

Eq. (3) of Shah and London might be more accurate.

Furthermore the numerical factor in Nu2 is different in
both correlations. As Nu2 is an asymptote, there should
only be one correct value. On the other hand Eq. (2)

suggests that there is no need to correlate Nu and Nux
separately as they are connected by definition.

Eq. (6) may be improved by introducing an additive

constant b and choosing a different exponent n to give

Nunew ¼ ðNun1 þ bn þ ðNu2 � bÞnÞ1=n ð8Þ

For laminar flow through a circular tube this type of

correlation proved to be very accurate, with a maximum

error lower than 1% for any Graetz number (see [2]).

Thus, the correlation (8) would still fulfill the limiting

cases of Gz tending to zero and to infinity, respectively,

and might be more accurate for intermediate Graetz

numbers. The corresponding local Nusselt number Nux
follows by introducing (8) into (2).

2. Calculation from the series solution

To validate the assumption and to fit the constant b

and the exponent n we have to calculate the Nusselt

number from the infinite series solution for the tem-

perature profile in fully developed laminar flow through

a flat duct with constant temperature boundary condi-

tion

H ¼
X1
i¼1

CiM
1

4

�
� bi

4
;
1

2
; bin

2

�
exp

�
� bi

2
n2 � 32b

2
i

3Gz
f

�

ð9Þ

wherein Mða; b; cÞ is the Kummer function [1]. The ei-
genvalues bi may be calculated from

Hðf;n¼ 1Þ ¼ 0

¼
X1
i¼1

CiM
1

4

�
�bi

4
;
1

2
;bi

�
exp

�
�bi

2
� 32b

2
i

3Gz
f

�

ð10Þ

and the corresponding coefficients follow from

Ci ¼
Z 1

0

Gið1
�

� n2Þ
�
dn

�Z 1

0

G2i ð1
�

� n2Þ
�
dn

¼ �GGi=�GG2;i ð11Þ

with

Gi ¼ exp
�
� 1
2

bin
2

�
M

1

4

�
� bi

4
;
1

2
; bin

2

�
ð12Þ

for constant temperature H0 ¼ 1 at the inlet at f ¼ 0.
Eigenvalues can be calculated with Maple V Release 5

for instant. We did so, calculating up to 200 eigenvalues

in less than an hour on a PIII 450 MHz processor. As

Nomenclature

B width of the plates (m)

b constant (dimensionless)

c heat capacity at constant pressure J/(kg K)

Ci eigencoefficient (dimensionless)

dh hydraulic diameter dh ¼ 2s (m)

Gz Graetz number, Gz ¼ 2ð _MMcdhÞ=ðkBLÞ (di-
mensionless)

L length of the duct (m)

T temperature (K)
_MM mass flow rate (kg/s)

n exponent (dimensionless)

Nu mean Nusselt number, Nu ¼ adh=k (dimen-
sionless)

Nux local Nusselt number (dimensionless)

NTU number of transfer units (dimensionless)

s distance of the plates, width of the channel

(m)

u velocity (m/s)

x lateral coordinate, x ¼ �s=2; . . . ; s=2 (m)
z axial coordinate, z ¼ 0; . . . ; L (m)

Greek symbols

a heat transfer coefficient W/(m2 K)

bi eigenvalue (dimensionless)

k heat conductivity W/(m K)

H dimensionless temperature, H ¼ ðT � TWÞ=
ðT0 � TWÞ

n dimensionless lateral coordinate, n ¼ 2x=s ¼
�1; . . . ; 1

f dimensionless axial coordinate, f ¼ z=L

Subscripts

0 at the inlet (f ¼ 0)
1 at the outlet (f ¼ 1)
W at the wall
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the evaluation of the finite integrals in (11) needs much

more computing power than finding solutions of (10),

we could only calculate the first 96 corresponding eig-

encoefficients.

Because of the parabolic velocity distribution the

caloric mean temperature

�HH ¼
Z 1

0

uHdn
�Z 1

0

udn ð13Þ

at the outlet (f ¼ 1) is then given by

�HH1 ¼ �HHðf ¼ 1Þ ¼ 3
2

X1
i¼1

CiFi �GGi ð14Þ

with

Fi ¼ exp
�
� 32b

2
i

3Gz

�
ð15Þ

The Nusselt number follows to be

Nu ¼ � 1
4
Gz 
 ln 3

2

X1
i¼1

CiFi �GGi

 !
ð16Þ

and for Gz approaching zero Nu1 is

Nu1 ¼ lim
Gz!0

ðNuÞ ¼ � 1
4
Gz 
 ln 3

2
C1F1 �GG1

� �
¼ 8
3

b21

¼ 7:541 ð17Þ

because only the first term of the series solution (10) is

significant in this limit. The limiting function Nu2 for Gz
approaching infinity cannot be calculated from the series

solution, as the series converges very slowly for higher

Graetz numbers. In this region, the asymptote Nu2 can
be calculated from L�eevêeque’s solution to be

Nu2 ¼
3

2

2

Cð4=3Þ61=3 Gz
1=3 ¼ 1:84882587Gz1=3 . . .

� 1:849Gz1=3 ð18Þ

(see [4, Chapter 3]). Therefore Nu2 given in (4) by Shah
and London [3] is more accurate than Nu2 given in the
VDI-W€aarmeatlas [2].
The local Nusselt number follows from introducing

(16) into (2) and evaluates to

Nux ¼ Nu� Gz
oNu
oGz

¼ 8
3

P1
i¼1 Ci

�GGiFib
2
iP1

i¼1 Ci
�GGiFi

ð19Þ

with the limiting cases

Nu1;x ¼ lim
Gz!0

ðNuxÞ ¼
8

3
b21 ¼ Nu1 and

Nu2;x ¼ lim
Gz!1

ðNuxÞ ¼
2

3
Nu2 ð20Þ

3. Results

With 96 eigenvalues and eigencoefficients computed

we found that our mean and local Nusselt numbers

matched perfectly with those tabulated in [3] for Gz up

to 105. For Gz > 105 simply more series terms are nee-
ded. By minimization of the maximal absolute relative

error between those Nusselt numbers and the suggested

correlation, we found

Nunew correlation ¼ Nun1
�

þ bn þ ðNu2 � bÞn
�1=n ð21Þ

Fig. 1. Relative error in mean Nusselt number prediction.

Fig. 2. Relative error in local Nusselt number prediction.
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with

Nu1 ¼ 7:541; n ¼ 3:592
Nu2 ¼ 1:841Gz1=3; b ¼ 0

ð22Þ

which has a relative error as shown in Fig. 1 of less than

0.63% for any Graetz number. The corresponding local

Nusselt number then follows from

Nux ¼ Nu� 1
3

Nu2 � b
Nu

� �n�1

Nu2 ð23Þ

and has a relative error as shown in Fig. 2 of less than

1.02% for any Graetz number. It should be noted that

the value b ¼ 0 was found by optimization of ðb; nÞ
for the plane duct, while (b ¼ 0:7; n ¼ 3), or similar

combinations (b ¼ 0:8; n ¼ 2:8) have been found for

the circular duct to be the optimal parameters in

Eq. (21).
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